
J .  Fluid Mech. (1978), vol. 88, part 3, p p .  636440 
Print& in Qrecct Britain 

535 

On the power laws for turbulent jets, 
wakes and shearing layers and their relationship 

to the principle of marginal instability 
By MARTIN LESSEN 

Department of Mechanical and Aerospace Sciences, University of Rocheater, 
New York 146277 

(Received 22 July 1977 and in revised form 5 May 1978) 

The classical power laws describing the similarity solutions for turbulent jets, wakes 
and shearing layers are found to determine a fixed turbulent Reynolds number for 
each flow. The power laws are then derived from the principle of marginal instability 
without the usual assumptions. 

1. Introduction 
Similarity solutions for jets, wakes and shearing layers have been known for many 

years and the respective power laws describing the variation of the characteristic 
width and average velocity scale along with the turbulent viscosity as a function of 
downstream distance are common to a number of models of turbulent transport. The 
power laws may be obtained in the manner of Reichardt (1941) and Goertler (1942) 
and summarized as in Schlichting (1968, p. 686). 

The concept of a ‘mixing length’ analogous to a particle mean free path was first 
introduced by Prandtl(l925) in order to provide a foundation for a theory of turbulent 
mixing. Prandtl further assumed that, in a similarity turbulent flow, the mixing length 
would be proportional to the characteristic width scale and that the Eulerian time 
rate of change of the width scale would be proportional to the average transverse 
velocity. It is significant that the mixing-length model with associated assumptions 
and alternative transport theories yielded power laws which compared with the 
observed behaviour of similarity flow regions of actual turbulent jets, wakes and 
shearing layers to good approximation. 

The power laws summarized in table 1 are interesting in that the Reynolds numbers 
of the various flows based on the respective characteristic width and velocity 
scales and the turbulent or eddy viscosities are all constant for each flow over 
the entire similarity flow fields. It has already been noted by Townsend (1956, 
p. 128) and Corrsin (1957) that the ‘effective’ Reynolds number (based on the eddy 
viscosity) is independent of the ‘true’ Reynolds number (based on the molecular 
viscosity), and in addition Corrsin observed that the ‘effective ’ Reynolds numbers 
for the round jet and the plane wake were of the same order of magnitude as the ‘lower 
critical Reynolds numbers’ of laminar free shear layers. It should be noted that at  the 
time of that observation no lower critical Reynolds numbers for the shear layer or 
the round jet had as yet been calculated. 

t Temporary address: U.S. Office of Naval Research, 223/231 Old Marylebone Road, London 
NW1 5TH. 
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Flow 

Free jet boundary 
Two-dimensional jet 
Circular jet 
Two-dimensional wake 
Circular wake 

Average velocity Turbulent 
Width scale scale viscosity 

6 urn V t  

X 
X* 

2 0  

20 

5-4 
TABLE 1. Power laws describing the variation of the characteristic width scale 6, the average 

velocity scale Urn and the turbulent (eddy) viscosity vt with downstream distance x. 

The distinguishing feature of turbulent jets, wakes and shearing layers is the 
existence of a point of inflexion in the velocity profile, for the rase of plane flows, or in 
the case of three-dimensional jets and wakes, the existence of a point in the velocity 
profile that behaves mathematically like a point of inflexion; such flows are known 
to exhibit strong inviscid instabilities and generally rather low minimum critical 
Reynolds numbers. The interaction of a disturbance with the aforementioned velocity 
distributions will generally not greatly affect the stability characteristics of the flows, 
in distinction to the case where the velocity profile has no point of inflexion. Malkus 
(1 956) postulated an extremum principle for turbulent flows involving a wave-like 
disturbance of the mean flow similar to a Tollmien-Schlichting wave, but application 
to plane Poiseuille flow did not reproduce observations. However, it is to be noted 
that plane Poiseuille flow is not inviscidly unstable. 

Since, in the case of turbulent jets, wakes and shearing layers, the average flow 
characteristics are constant in time, there must be a mechanism which maintains 
the turbulence and hence the eddy viscosity. Such a mechanism must transfer energy 
from the average (steady) motion to the random ( ? )  or turbulent motion. It is hereby 
postulated that the mechanism consists of a normal-mode oscillation or Tollmien- 
Schlichting-like wave on the ‘average’ flow which then interacts with the full spectrum 
of the turbulence present to pump energy into it, the wave drawing its energy from 
the average motion. The question may then be asked, ‘Is the wave damped, amplified 
or neutral? ’ If the wave were damped, a decreasing amount of energy would flow 
into the turbulence, resulting in a reduced eddy viscosity and a progressively higher 
Reynolds number based on the eddy viscosity; the process would continue until the 
minimum critical Reynolds number for instability was reached and then stop. If the 
disturbance were amplified, the reverse would happen, leading to the conclusion that 
the disturbance must be neutral or marginally unstable with a dimensionless wave- 
number corresponding to thut at the minimum critical Reynolds number. 

According to the principle of marginal instability, the flow Reynolds number 
(based on the eddy viscosity) should be equal to the minimum critical Reynolds 
number for instability. Since the turbulent flows considered have similarity solutions, 
the ‘minimum critical ’ Reynolds number corresponding to each solution is fixed; 
therefore all similarity turbulent jet, wake and shearing-la yer flows have corres- 
pondingly fixed turbulent Reynolds numbers. 

The far-field flow of a turbulent jet was studied by Lessen & Singh (1974) on this 
basis and the experimentally observed angle of spread correlated very well with that 
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predicted by the principle of marginal instability. The experiments on free turbulent 
shearing layers by Brown & Roshko (1974) are also in agreement with the principle; not 
only is the angle of spread fixed, but so is the dominant dimensionless wavenumber. 

One might consider the area of ’ inviscid’ separated flows and jets as generally 
characterized by surfaces of velocity discontinuity. Since the surfaces of velocity 
discontinuity are unstable with respect to a travelling-wave disturbance, a ‘ mixing’ 
zone will develop to replace the surfaces of discontinuity and spread at a characteristic 
angle with a characteristic dimensionless wavenumber. In the case of a plane jet or 
wake (top-hat velocity distribution), the near-field shearing mixing layers will spread 
to obliterate the core flow and will then continue to spread at the rate of spread 
corresponding to the far flow field. In the corresponding round jets and wakes, the 
rotationally symmetric mode of disturbance becomes stable as the core is obliterated 
but the modes of azimuthal periodicity unity take over with their own characteristic 
minimum critical Reynolds numbers, dimensionless wavenumbers and similarity 
spreading relationships. The point at which the angle of spread changes from its 
near-field to its far-field value is called the break point as in Lessen & Paillet (1976), 
where the predicted transition from the near to the far field according to the principle 
of marginal instability was shown to correspond to observations by Mattingly & 
Chang ( 1  974). 

The two-dimensional wake behind a plate or a bluff body exhibits an antisymmetric 
(kink) mode of instability a t  a lower critical Reynolds number than the symmetric 
(sausage) mode and hence it generally dominates the situation after the core flow is 
obliterated by the spreading of turbulent shearing layers. The dominant dimensionless 
wavenumber then corresponds to that of the von KBrmBn trailing vortex street. 

The foregoing discussion leads to the conclusion that, even in ‘inviscid’ flows, 
surfaces of velocity discontinuity, though mathematically possible, are not physically 
realizable and that turbulent shearing layers spreading in a predictable way correspond 
to reality. It is therefore seen that the principle of marginal instability is in agreement 
with the known power laws describing the variation of width, velocity and turbulent 
viscosity with downstream distance in that it predicts a constant turbulent Reynolds 
number for each flow. It will now be demonstrated that the power laws themselves 
may be derived from this principle. 

2. Analysis 
Jets, wakes and shearing layers are generally considered to be ‘almost parallel’ 

flows. In the modelling of these flows, the boundary-layer approximation to the full 
Navier-Stokes equations is used. In addition, for the case of wake flow, the wake 
deficit velocity is considered to be much smaller than the free-stream velocity. 

Two-dimensional turbulent shearing layers, jets and wakes 

The relevant approximation to the Navier-Stokes equations may be written as 

au av 
ax ay 
-+- = 0, 

au au a2u 
u-+v- = V f T ,  

ax ay ay 
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where x and y are the co-ordinates parallel and normal to the principal flow directions, 
respectively, and u and v are the respective velocity components. v, = vt(x) is the tur- 
bulent viscosity. For the case of turbulent shearing layers and jets, let 

x = /rVt(X')dxl, 7 = yxP, $= u m X n g ( T ) ,  

where $ is a stream function and Urn = Um(x) is a characteristic velocity scale. Since 

u = a$h/ay = UmXn+pgf(q), 

it follows that n = - p ,  Therefore (2) becomes 

For the shearing layer, Urn = constant; therefore for (3) to yield a similarity solution, 
it is necessary that I, = - 4. Hence, from the definition of 7, S N 24. From the principle 
of marginal instability, the turbulent Reynolds number R, = UmS/v, = constant. 
Therefore v, = dx/dx  N xi and x N x2. Finally, vt N x and S - x ,  in agreement with 
the classical power laws in table 1 .  

For the two-dimensional jet, it is necessary that Urn - ~ 2 P f l f o r  (3) to yield a similarity 
solution. Also, from the principle of marginal instability, v, N x P + l  since 6 N x - p .  

Therefore x N x - p  and 6 - x .  From momentum-flux conservation, U L S  = constant. 
Hence U,, N x-4 and v, - x i  in agreement with table 1. 

For the two-dimensional wake, (2) is further modified to give 

u, a q a x  = Vt a2ulay2, (4) 

where U, is the free-stream velocity past the obstacle producing the wake. Let 

It follows that u = U,xpg' = Umg' and (4) becomes 

glum x P - l ( g '  + 9") = x3pg".  

For a similarity solution, p = - 4  and 6 - xi ,  thus Urn - x-4. From R, = constant, 
v, = constant, therefore x - x, 6 - x i  and Urn - X-4 in agreement with table 1.  

Three-dimensional turbulent j e t s  and wakes 

The relevant approximation to the Navier-Stokes equations is 

a(ru) a(ru) -+- = 0, 
ax ar 

For the case of the jet, let 

then 
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from which n = - 2p. Equation (6) can then be written as 

539 

dx 

For a similarity solution Urn - xl-". Since 6 N x - p  and R, = constant, 

vt = dX/dx - ~ 1 - n - P  and x N x*+~. 
From conservation of momentum flux, U k  a2 = constant, or U N 6-l. Hencep = 1 - n. 
Since n = - 2p as well, p = - 1 and n = 2. Therefore x - x,  v, = constant, Urn - x-l 
and 6 - x in agreement with table 1.  

For the case of the three-dimensional wake, (6) is further modified to 

which upon using 

becomes 

For a similarity solution, p = - 1 ,  S N xit and Urn - x-1. Since R, = constant, 
vt - x-i. Therefore x N x4, Urn - x-%,6 N x* and v, - x-+ in agreement with table 1 .  

The solutions for the average velocity distributions of the similarity flows can be 
obtained from (3),  ( 5 ) ,  (7) and (9), respectively, in the usual manner. 

3. Conclusions 
The principle of marginal instability allows the derivation of the power laws 

describing the variation of the characteristic width and average velocity scales and 
the turbulent viscosity with downstream distance without any additional assumptions 
regarding the nature of the turbulence. The turbulent Reynolds numbers fix the vari- 
ation rates from first principles without requiring evaluation of a parameter from 
experimental data. Furthermore, the wavenumber of the marginally unstable 
disturbance is related to the dominant eddy scale. 
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